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ABSTRACT

This report describes a linear system representation suitable for

use with signals of finite dimensionality. This representation takes

the form of a matrix with elements which depend both on the choice of

signal basis and on the transmission properties of the system. The

reportis divided intotwo parts. The first part is devotedto the deri-

vation of the system matrix for an arbitrary system transfer function

for several widely-used signal bases. The second part considers the

case in which only the system matrix is known. An equivalent repre-

sentation, expressed in terms of acontinuous parameter, is introduced

to facilitate approximation of the system transfer function, and trans -

formation formulas are established for a number of cases where they

have a simple form.
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1. DISCRETE, FINITE REPRESENTATION OF A LINEAR

STATIONARY SYSTEM

I.I. INTRODUCTION

The efficient representation of a given signal class in-

volves the selection of a minimal set of component functions in terms

of which every member of the class may be described with acceptable

accuracy. In many instances, as, for example, in the representation

of .signals limited in time and frequency, a finite set of components is

sufficient for the complete representation of the class. In order to

devise a characterization of a linear, stationary transmission system

compatible with this method of signal representation, consider the re-

sponse of this system to an arbitrary signal chosen from such a signal

class. In general, it will not be possible to obtain, a complete represen-

S~tation of the response in terms of the original set of component functions;

however, the least-mean-square approximation of the response which

may be so represented leads to a satisfactory characterization of the
Ssystem provided the resulting error is small enough . Where it is not,

a re-examination of the set of signal components chosen becomes

necessary and a larger set may have to be used.

Clearly this situation corresponds to the notion of a linear

transformation of the original signal space on to itself and to the re-

presentation of the transmission properties of the system by the matrix
of the transformation . The elements of this matrix will depend both

On the choice of basis - that is, on the signal components, and on the

system itself. The derivation and manipulation of this matrix is the

subject of Part I of this report. The treatment parallels that given
3in a recent Internal Memorandum.

Let IF> be an arbitrary signal chosen from the given

signal class. Then IF) may be completely represented in terms of

some basis set
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N

that is, IF) = I*

k= i

If IHI is the linear operator referred to above,then, following

Huggins , we can write

N

IHIk k) I hjk4J.j (I. I)

j=I

The left side of this relationship is the true response of the system.

The right side is a vector lying in the original signal space. Clearly

the Nk values ofh. j, k, = I, 2. N, for which the equivalence

is in the least-squares sense, constitute a discrete representation V
of IHI which provides a least-squares approximation of the system

response. In order to ascertain those values of hik let

N

¢k> =IHI'ký - hjk[.)

j=i

then, for minimum mean-square error:-

N N

(I ek I-H (Ih~,] [ IHb.) -I h.1 j4Jj)
j=I j=I

7 7 ( I k >= <( pl[IHl-k -k h.1jklP ]
pq j=j

N

O when (TpIHbIk) 1 Y hjk(Tp I j)

j= I
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Let
m pk (Tp H[¢k)

9pi p j

For minimum error,
N

mpk = hjk gp.

j= 1

or, in matrix notation:-

M= GH (1.Z)

and

H =G- M (1.3)

H is the required system matrix with elements hjkj= 12,...N and

G is the familiar Gram Matrix.

A.s an alternative procedure, an orthonormal basis could have

been derived by means of a linear transformation of the given basis,

in which case the Gram Matrix would reduce to the Unit Matrix. This

suggests a relation between the Gram Matrix and the matrix which

transforms a given basis to an orthonormal one. This relationship

is explored in Appendix 1.

To determine the Error Energy:-

N N

I' lek)= ,[I<i;fiI- ' H" 1,h" I] FIJH-Ik)- k h1ij)]
i=1 j=1

N N

(lJHIHIJPk + h g..k• X , hi hijk gij

i= j=•1

I
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N N
- hjk My -I hif ik

j=i i=1

N N N

(rllrk) + h -f m Ik gj i
i= 1 j= 1 i=

N hz *
ilmik

where Irk)- IHIk)

~~(~k~rkk - kmg)t i
N N

k k) i i =9 jim

LetN ^ -E =U -M G M whereuk: I I r k)
N N

Then the error energy E _ i'' Iek) is just the sum of the

elements of E. I= 1 k=1

For an orthonormal basis, G = 1, M = H in which case:-
N

Error Energy = -klrk) -r h2,which is the true

k=1 k=lj=i

output energy less the sum of the squares of the matrix elements.
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1. Z LINEAR TRANSFORMATIONS AND THE DIAGONAL

REPRESENTAT ION

It is often possible to simplify the system matrix by means

of a linear transformation of the signal basis.

Consider any two complete bases I4•i and i4, i = 1, 2.... N

and let N

j=1

N

IF) 3 £k+k)
k= i

N N

= k1 j=1

N N

= 33 cj ftlji) i
j=1 k=1

N

but IF) 3 I%
j= 1

N

f~j Cjkk

k= 1.
or

and
F> $ = C ,

If

then
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C R) 4 =CGF)+

R)=C- 1CF

But

If H can be diagonalized, say by the similarity transformation

Hs U_-1 H U_,(.)
- 14

then, from Equations (2. 1) and (Z. 2), it is clear that C = U gives the

linear transformation of the signal basis which will always lead to a

diagonal form of the system matrix.

"Hi
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1. 3 EXPONENTIAL BASES

The choice of basis is determined primarily by the nature of

the input signal which must be adequately represented. So far,

error estimation has been on the assumption that the description of

the input vector is complete. For an extremely wide class of

signals, however, growing (or decaying) exponentials provide a

suitable characterization. Apart from the discontinuity resulting

from the signal epoch, these components are eigenfunctions of the

system. As will be seen, this leads to a diagonal system matrix

with easily computed elements provided the exponents are distinct.

The case of a characterization based on a single exponent is dis-

cussed separately. A more general discussion of the use of
1. 4

exponential components will be found in Huggins and Lai

A. Forward Components

s tLet ýk(t) e t > 0, ck<0 s ck+ jW
k kI¢o@kS) 0 8 a+ +jW0

s -sds
mkk - i H(s) 5 5 k dsV

From Appendix z, r may be taken as the jw axis

H(-s')
m = --1-- for H(s) having no poles in right half plane.

s+ s

Also, g *
s8 +sk
~I k

In matrix notation:-

where
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"H(-sI) 0 0

0 H(-sz) 0
H-s 0 0 H( -s3)

From Equation (1. 2)

and =-- H - G (3.1)

-sH GH G-1 
(3.2)

From (2. 2), the change of basis which will result in a diagonal

system matrix is given by:-

C =G-

B. Backward Components

sktLet 'Pk(t) :et < 0 Cyk > 0

k()-_s+sk <0

1--- H ds

s+ss 2- k j

H(S k)

k I

grz• 1 ds

r-s 1  sk ~ k

1 s+ s*



.. M=GH

where

H(st) 0 0

0 H(s 2) 0

H= 0 0 H(s 3 )....-S

0 0 0 ....

and

H =G M =H ( (3.3)
- - -s

s howing, that for backward components this choice of basis leads

directly to a diagonal system matrix.

C. Matrix Elements for a Basis Consisting of Laguerre Functions

The reduction of the system matrix to a diagonal form

results from the choice of distinct exponents in the basis. There is

one important case in which this does not occur, namely, when the

input signal is characterized in terms of a single exponent. In this
1,5instance, the orthonormal basis derived by the Kautz method

has a particularly simple form. Consider the case of sk a, k=, 2,

N (forward components)

It 1 s/2 k-1
k(S) = (-L -a'-.) k 1,2 ... N

(s -a)
h1k = mlk = (yi IHI qk)

-- *) - (-s+IaL-1 H(s) (s+aC)k-I ds

F (-s-a )L (s-a)



( H(s)(s-a) d.s

- (s+C )6+1 21T

where 6 = I - k

(-a-a -)C (B -Cl) H(s)* (3.4)

iS = -C,

6• 0

=0 6<0

h = H(-L*)0
h, = (-a-*) H'(-ai)

h2 -- 7-)H [H,(-,*) + (-_-a*) H)H(-c*)]

_ (-a..c-r) [6H'( -a*) + 6(a -a*) HI -a*) + -a -a*)2H' 1-]

etc.

The H matrix is therefore triangular and the values of its elements

depend only on their distance from the diagonal

If ca =-1

h = 6 Fs+11 (3.5).6 T T [(S+1/2) H(s)](.5
as=

00

=0 6<0

h= H(i/z)
0
h1. H,(4/Z)

h =:(1I4 ZH'(I/2)+H"''(1/2)]

h (1/6)L6H;(1/z)+6H','(1/2)+H'"(1/Z)] etc.

3 L



i. 4. MATRIX ELEMENTS FOR A BASIS CONSISTING OF

ELEMENTARY "HOLD" FUNCTIONS

Exponential functions are suitable for characterizing signals of

semi-infinite duration especially when there is prior knowledge of the

distribution of complex frequencies. They do not lend themselves to

an exact description of a time-limited signal such as might result

from the application of quantization or pulsed-code techniques. The

introduction of compound errors may be avoided by using the so-called

"B" basis, defined as follows:-

•k(t) = i (k -1)':! t < k

= 0 t<(k-1), ti k

j k = 1, Z .... N.

This is an orthonormal basis. Considering forward components only:-
1 ( -S -(k-l)s

-•k(1- = ) e- -00 < a

hJk = 
m jk ; 4siHI4Ik)

1 f -eS (j-1)s H(s) 1-e-S -(k-l)s ds
F -s 5Zr

-- S'H(s) 6 -s } Ss ds (4.1)

where 6 j-k, and rmay be taken as slightly to the right of the jw 1?

axis. Again, the values of the elements depend only on distance

from the diagonal.

Case 1 6 < 0

h = 0 since the integrand of (4. 1) is analytic to the

right of r.
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Case 2 6 = 0, diagonal terms

hH(s) s ds

h -h("t)(0) + h(-2)(i) -h(-2)(0), by Appendix 3. (4.2)

Case 3 6 > 0

h5 • H(s) e(6+1)s_ Ze6 e(6-1)s8 dsh 6J -a---- { e 2e +e

H(s) e(6+1)s ds H(a) 6s dsf+ H() ds'• F2 r• +2-
r --a "- 21TJ: r -8 H e ds r ds

Using the result in Appendix 3, we have that

h -(6 -1)h - (0) + h'- '(6-1)-h(- o l I

-2 61-sh( 0)(0) + h- 2 )(6) + h( 2 )(0)1

+ {-(6+1)h(_1 )(0) + h( 2 )(6+1)-h(-~2)(0)j

h = h (- 2 )(5-F) - 2h(-?)(6) + h(-2 )(6-1) (4.3)

This completes the determination of matrix elements for signals
existing only for positive time. Otherwise, this matrix is one of the

four sub-matrices necessary to describe the system. For the other

three,

h~g= < ql: j~~5.I

h =(lIkI J) = hkj (4.4)

-S )s H(s) i-e e -(k-1) ds

jk (4.5)

h' bk 0 f or all jand k (4.5)
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h-e e(i-l)s H(s) 1.-es e(k-l)s dshjk - s -- -S Zl--i

H(s) {e(6-Z)Sze(6-1)s + e6 S} ds

I- s T r

6=j -7=j+k

6> 2

h - =•-{ 6-)h( 1)(0) + h( -Z)(6-2) - h( -")(0)l

6h 0) + h (-2)+ (6 )-h (0) (,

(-Zh~f) +h'(-2) (-2)
h h -2 )(6) - h -2 )(6-1) + h(-)(6-2) (4.6)

A. Effect of Mid-Interval Sampling

It is often more convenient to use the basis defined by:-

ýk (t) 1 (k 1 /2)g t < (k + 1/2)

=0 t < (k -1/Z), t (k+ i/2)

k= 0, 1, 2. N
k-e s H -e -S e-(k-1/2)s ds

h. (js1/2)s ZH)j e

H(s) e6s eS -s ds

65j -k
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Thus, for a given 6, these matrix elements are the same as those

determined in Section 1. 4. However, both j and k can now be zero.

As before,

% . k (note 6 j -- k = - j)

h,!= 0 all j, k, except j = k = 0. 6 = j - k = -(j + k) < 0.
jk

!s (J-1/2)SHs) 1 e-Se(k+l/Z)s do
h.-= f (-es) e H(s)!(e )er--d

Jk ' ss Zj

wher e

- j+k

h.- = h(=)(5+1) - 2h(-2)(6) + h,(2)(6-1) for 6 2

from Equation(4. 3).

Summarizing, we have

h6=0, 6< 0
6<

h6 = -h - (0) + h(z)(1) - h(- (0), 6 = 0

h6 = h -2 )(6 + 1) - 2h( -)(6)+h 2)(6-'1), 6 > 0

where 6 iF defined as above for each submatrix.
Only in elements such as h - does the system matrix differ

from that of Section 1. 4, although it differs in size by at least one

row and column. In integrating the impulse response for insertion

in the above formulas arbitrary constants are introduced but

do not appear in the final evaluation of the matrix elements.
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1. 5 MATRIX ELEMENTS FOR A BASIS CONSISTING OF

ELEMENTARY TRIANGULAR FUNCTIONS

A complete description of any function which can be reduced

to straight line segments is possible using the elementary triangular

component defined by:-

S-ks
Vks) = (es - 2+ e-s) e , k= 0, 1,Z .... N.

A. The M Matrix
p 4- ss 4 s e-ke ds

mjk j (e- 2-2+e')ejSH(s) 1 (eS-2+e- )e - -
jk rs 13

. = f.. ~~~Hs-{ p)[e s(6+2)- 8e(6+1)6e6 -4S( 6-1)+es(6-2• ds" T"i,

(5.1)

Case 1 6 < -1

m~k 0 since the integrand is analytic in the right half

plane

Case Z 6 -i

m H(s) s ds
mik es 

,z

1 (- _ h(- 2 ) (-) (-4) iGh )(0) h-(0) -3)(0)-h ( 0) +h (1-)(£ ,

by Appendix 3.

Case 3 6 = 0

From Equation (5. 1)

H(s) -Z ss ds

= _ h "17 ))

8 - (-1) 4 h( 2 )(0) -Zh(-)(0)h(-)0+h-4
--Gh(0 (2-
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-41- • h- 1 (° - ••h (-0 h ( 0) - h -(0o h (0) + h Ml

- -h(-)(O) + 2h(-3)(0) + 3h(-4)(0) + h (4)(Z) - 4h (-4)(1)

Case 4 6 = 1

= j H(s) 3 s- 2 e dsmn6 =-f 4e +se ' -

- 27- h(-I)(0) - 9h(-2)(0) - 3h(-3)(0)-h(-4)(0)+h(-4)(3)

-4_- jh '(0,) 4- h(T (o)-2h( 3 (O)-h( 4 '(O)+h( -4(2,)]

1 -. _h (-t(O) _½(-2 ) O (-3) O (-4)( (-4)h _• (1(0) + •hi-2(0) -h(-3(0)-3h(-4(0)+h(-4(3) ,

-4h -4 )(2) + 6h -4 )(1)

Case5 6 > 1

From Equation (5. 1)

m6 -• ( -I)(0)- --(6+2")2-h(-)0 - + )h -3 0 -h 4) )h -)(+ ),;
3 2

+6 - h(")(0)--62-- h(- 2)(0 )-6h-3 ) (0)-h( - h)(0)+h (6+2

-41-(6-1)3 h(-I)(0)-( ")--'Z--" h(Z(0)-(6-1)h( - (0) -h(-4(0)+h(-4(6+1Z)

+6h 4'6 +2 h h(0-4)(+ )h( - 4)( 6) -6 4(0-)( -h (0)+h( - (6 -)]
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For the other three submatrices related to the double-sided

representation,

1 s-8 -iB 1 -s s kds
m-_s (e -2+e-) e-H(s) -e -Z+e )e Z'--

= ki

H= )k e 294es + 6-4e-S + e-2 9 e-(j+k)s ds
mjk 147 1 7•

= 0 all j > 1, k> 1

The elements corresponding to j = 1, k= 0, and j = 0, k = 1 may

be considered as belonging to one of the other submatrices

Hms) 2s s 2s e (j+k)s dBk= Y- ---() e S- 4eS+6 - 4e- +e-S e( ks 21Tjd-s

By defining 5 - k= j + k for this submatrix and noting 6 > 1,

m 6 can be computed from a knowledge of mjk, that is,

m 6  h (6+2)-4h-(6+1)+6h-(6)-4h (6-1)+h( 5-Z).

This completes the determination of the M matrix. Due to the

correlation existing between ] bk> and 'ýk+i' triangular matrices

do not result from m-- and m as inSection 1.4. Apart from this,

the general form of the complete matrix is very similar to that

derived in Part 1. 4 B.

B. The H Matrix

To obtain the H matrix it is necessary to pre-multiply
-1.the M matrix by G where G is the relevant Gram Matrix. Re-

placement of H(s) by unity in the previous section leads to a tri-

diagonal matrix with elements:

g6 = 2/3 5 = 0

g5 = 1/6 6 = ± 1

g5= 0 6< -1, 6 > 1



F
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Inversion of this matrix is carried out in Appendix 4, from which

n ik•r kjin
-1 6 T sin n+-4-in s n-N

n+i k - ~ r n-ZN+
k=1 2 +cos-i

where g.. is the element in the ij position of the Inverted Gram

Matrix.

CO

I

4'
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Z. CONTINUOUS REPRESENTATIONS OF SYSTEM MATRICES

2.1 INTRODUCTION

The first part of this report has been concerned with

the reduction of a known system transfer function to matrix form.

This part considers the converse problem in which only the system

matrix is known. Since this matrix contains information which

relates only to the finite-dimensional space spanned by the signal

basis, it will not generally be possible to recover the original

system transfer function of which the given matrix is a discrete

representation. In many cases, however, it is possible to find a

transfer function which is equivalent to that of the actual system

in the sense that it has the same matrix representation with respect

to the relevant signal basis.

Consider the case in which this equivalent system

transfer function is described by the infinite sum of suitably defined

component functions. Formulas derived in Part 1 of this report

can then be used to obtain a set of equations relating each known

matrix element to the unknown coefficients of the summation. In

general, each of the infinite set of coefficients will contribute

to every element of the matrix, and the relationship may not be a

linear one. As will be seen, however, there is a considerable

reduction in complexity when the assumed transfer function is

represented in terms of an infinite set of the same component

functions as describe the signal. From Equation (1. Z) of Part 1,

we have

H= G M

where H is now the known system matrix, G the Gram Matrix for

the signal basis used, and M consists of elements mjk.

M=GH

so M is readily determined.
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But
m i 'H'' t  ds

tak = ( 4 [H[ 4Jk) 'IF s)Hs)TklSI -r*

where I ,k = 1, 2 . N is the signal basis

If O

H(s) 3 A.i bi(s)

then

oo A•a (1. 1)m._k = T= t I ,F Yl-8) %i(s) Yks) T,-j

This is a statement of the N2 equations referred to above. The

evaluation of all coefficients Ai which contribute to m for all I
A mk

and k less than or equal to N determines H(s), giving an equivalent

transfer function of which H is the matrix representation.



Z. Z EXPONENTIAL EXPANSIONS

Consider a signal class described in terms of forward

exponential functions

k (S)= s k < 0 a> 0, k = 1, 2 . N

kwhen the s k are- distinct.

Taking the diagonal representation H--s

H = G H, G-1

where H is the system matrix corresponding to the basis defined-4
above, we have N equations of the form

h = H(-s j : 2 .... N N (2.1)
33

z%• If oo A
•P•H(s) E S i

i s-s.

then

cO A.
h..= . - , j 1=,Z .2 N (2.2)JJ i= t - .s

00Fo A. <•ýji

00E E A i gji
i= 1

If H) is a column matrix with h.j in the jth row and A) is a column
matrix with elements A. i= 1,2....3N, then

-ii
Aý = G H) (2. 3)

The form of this equation suggests that for the assumed ex-

pansion, the coefficients A.. are those which provide a minimum

least-squares estimate of H(s). Indeed they have been chosen in

such a way that
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Ai

H(-s.) H(-s.)

which is the criterion for least-squares coefficients for an expan-

sion in terms of a preassigned set of exponents, sj, j = 1, 2,.. N.

An alternative approach is to assume a rational fraction ex-
A

pansion for H(s), that is

OD
F, b!si

A i=O 1
H( S)- OD

Z a!s
i=O I

and to make use of the known properties of transfer functions of

physical systems. Then, from Equation (2. 1), we have:-

N/2w- -l
SbJ( -s) '-i

h.. i=O• 1 i
E a!(-s.)

i=O

N/2 . ri -1 NZ 24

b=i,.Nh- _ _ 24

where

a! b!
1 I and b. -ai a•IN / 2I

and N is even.

This set of N equations may be solved for ai, and bi, i - 0,

1'1, 2. N/2 - 1.

An example is given in Appendix 5.
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2.3 LAGUERRE FUNCTION EXPANSIONS

Let
4i(s) = Li(s) = + (-a)1/Z (s+a)

(s-a)

i = 1,2. N

then, from Equation (1.1):-

*•3/z OD (-s+a= -1(s+a*)i-l(s+*)k-1d
hi=h =(-a- •)/ AilJ s - a k ds

1k5ir ~ (-s-aL ) (s-aL) (s-aL) T

3 =1 0 (s3/2) 6-i-1 d-
h6= -(-aL-a A * A. -i+2 dsj

' r (5+0. )- i

32A 6 A +1ds
-(-C)-3 * F + 2 ]r (s-a) (s-a) (s_-a) (s+a* ) -•

"A A
S- a /a)3/2 r A - A5+1]

(a - -L (-a _a)
II

*/jA5 -A5+ (3.1)1 •,)/2 - A6+11
(-aL-a

A6 (•_,,)llz 5-1 I!
A5 =-a-L 1/ h. (3.2)

i= 0 1

If a = -1/2

6-1
A= 6 h. (3.3)

1=0

To establish that A 6 6 1, Z. N are least-squares coefficients it

is sufficient to show that least-square coefficients satisfy Equation

(3.1). Consider the orthonormal expansion
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V
H(s) = E A! L.(s)

i=1A L 1

A' -A'+ 1= L6 - L6+1 IH
&6+

= (-a-a *)-/2 J [ (-s+a)6-1 (-s+a)6 dr (-s-a )• (-s-a*+ ]is

-(-aa*)i/ZJ [(s-a)6-1 (s -a)6 ]H(s) ds

r I(s+a*) (s+a*)8+7

-(-a--a )(s+a- s+a) H Zs-d

r
=-+ (-a*-L! 3 (s,-a)+ H(s) ds -

(s+a )2

ds
= -(-a-a ) J -,.(-s)*H(s)Lk(s)

=-(-a-a")-/ h5

Thus a choice of orthogonal Laguerre Functions as basis also leads 1k

to least-squares coefficients.

An example is given in Appendix 6.
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2.4 EXPANSIONS IN TERMS OF ELEMENTARY HOLD FUNCTIONS

= e Ai s -s) -1es
i= is

then, from Equation (1.1)
00 s 1 ls 'e (i-1)s 1 - -(k-l)s ds

h=h = h A. .. (-eS)e( 1 )s - (1e-e- )e l-e-)k i=i -s sr

0o
1U 3s s-s' (6-i)s ds

=~ AF -T e -3e + 3 -e; e w
i=1. i

(6-1) •! -2 , h6 = 0 since the integrand above has then no poles
in the right half plane

(65-1) > 1 , h6 = 0 since the integrand above has then no poles
in the left half plane nor at the origin

a A
6-1 =1, h =-Ae+ 1  ds 6+1

s

1 Zs zds A6
6-1 0, h6 = A6  (e -3es) -

h J~ {A 6  + A6 }

5-1 6-+
A =2 X (-1)6-i+' h. (4.1)

i= 0

This choice of basis does not lead to least squares coefficients.

An example is given in Appendix 7.
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2. 5. EXPANSIONS IN TERMS OF ELEMENTARY TRIANGULAR

FUNCTIONS

From Equation (5.1) of Part 1:

m~kmS ! ) {e(6+s))_4e(6+1)S+6e6S_4e(6 -)S+e(6-Z)s} ds

(i(s) 1 (eS-2 + e s ) e-is
1

From Equation (1. 1):-

O_1_ - 2S (6~-2)+ (6-3ý-is ds
m6=i •'A --= -6"[tJ6+3)s -oe"( s+ 2+15 e(6+1) B- 20 e6 8+1 5 e(6 1 ) s- 6e(=1 -j)e s 716-i2-d

r

i : 6 + 3, m 6 = 0 since integrand has then no poles in the right
half plane. P

i < 6 - 3, m 6 =0 since integrand has then no poles in the left
half plane nor at the origin.

i6+2, m A eS ds 5-Ai=~ 6 , m5=A+2 --F6-2-T = 6 + 2

r 8

=m 2s(eS-6e) s ds 6= A
= 6 + , m 6  A 6 +1  =

5~~~ T. S +

626 m = A6J 1 (e 2 3-6eZs+s5eS)I-s= 66 A d

is
4t, s 3s4s 2,3s s .2,6st ~

6 - A6_1 -1-e - 6e +15e .-Z0e +)5e )=•-[A6_2i

6 [A+ + 26A6 +± + 66A6 + 26A6 _ 4+ A 65 2] (5.es)

6+2 = 6 6+ 6 6-1 6-2



(I

-z8-

Since m6 0, 6 2 - 2, successive coefficients are readily obtained:-

A = 5! rn5m

A 2  5! m° 26AI

A 3 =5! mI1 - 26A - 66A1

A 4 = 5! mz2 - 26A3 - 66A2 - 26A1

An example is given in Appendix 8.

V"°
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CONCLUSION

Part 1 of this report deals with the matrix representation of

a known linear system. This representation gives the response

of the system which, in terms of the components of the input signal,

has minimum error in the least-squares sense, and input-output

calculations are reduced to simple operations with matrices. Basic

relationships are established for component functions which are not

necessarily orthogonal and a brief discussion of the system matrix

for exponential basis with distinct or repeated exponents is included.

The remainder of Part 1 deals with the computation of matrix

elements for signal classes for which two commonly used time

representations are appropriate. In one case, the component func-

tions are not orthogonal and the required Inverse Gram Matrix of

arbitrary dimensionality is established in an appendix.
One further advantage of the matrix representation is that it

retains only those system characteristics which effectively modify

CCT the signal. This means that given a system matrix it is not

generally possible to infer the overall properties of the actual

system. It is possible, however, to determine a transfer function

which has the same matrix representation. If this Equivalent

Transfer Function is obtained in a suitable form, instrumentation

of the discrete system may be achieved by standard synthesis

techniques. Further, when an exponential basis is used, an

approximation to the actual system transfer function is obtained

with expansion coefficients chosen in the least squares sense.

Part Z of this report deals with the derivation of Equivalent

Transfer Functions which are represented by an infinite set of

the same components as describe the signal. This restriction



-30-

leads to simple expressions relating matrix elements and expansion

coefficients for all signal bases considered in Part I. Examples

are given in appendices. It should be noticed that the computation

of these coefficients is accompanied by a rapidly-increasing loss

of accuracy. Considered in relation to the accuracy with which

the matrix elements are known, this factor sets an upper limit

on the dimensionality of the discrete system for which this

representation is useful.

Hi
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APPENDIX I. ORTHONORMALIZATION AND THE GRAM MATRIX

'g1 k = ( I k ) by definition

For an orthonormal basis

(+1 k) --=

Let N

I+k) = N Cikli

F, ( I Ic~

N N ,

(+1 +k) = 6'k = F F- cJ1 cik gjt

G== C C

This gives the relationship between the Gram Matrix and the

matrix of the transformation which provides an orthonormal basis.
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APPENDIX !. CHOICE OF INTEGRATION PATH IN COMPUTING

INNER PRODUCTS

fig f=) g dt f f(t) g(t) e-s dt ,for f(t) real.

o 1co=0

Let
co

G(s) = co igt) e "t dt q, < cy < i2 s=aZt

-CO

03 -stco ptd) g(t) e)dt e . ( ]ep<
( g) f(t)LJ G(p)e e -stdt

-CO c-jo o s =0 .

d( P t 1  dp_=,G(p) f (t) e dt] -1r it

-co s = 0

c+j0o
S(p) F(s -p)y - -

c-jo0 S 0

y(< Re (s-p) < YZ

For path:-

Thi <C<,zq

also,

Yj < Re(-p) < y., since a = 0

that is,

-Yz < C < -Y,
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!

Combining these requirements gives

Max (T, - y2)<c <Min(i), -'Y1 )
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APPENDIX III. TWO USEFUL INTEGRALS

A. 6H(s) 6s ds _ 6-X)hIx)dX

8 27 i

where h(t) is the Inverse Laplace Transform of H(s)

H s e 6 s ds (6-X)h(l't~) + h6- f6)dX

r s 0

= -6h(-l)(0) + h(-2)(6) - h1-2)(0)

where

h- M fh(X) dX

B.

H(s) 6s ds ( I' (6-X) •---- 4- e h(X) dX
s 0

=h( - )(X) ,6-X)!-- + h('0()( -)2 d

5 3 (5_ Z ( -)Z

=_ h (0.) + h (k) + S h(-2)(X)(6-X)dX

6 h( 4-i)(0) 0 h,(-4)(0)

i=0O i!
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APPENDIXIV. INVERSION OF THE GRAM MATRIX FOR A

TRIANGULAR BASIS

From Section 1. 4B

Z/3 1/6 0 0 0 0
1/6 z/3 1/6 0 0 0 ....

o i/6 2/3 /6 ....

0 0 1/6 2/3 i/6 0
G= 0 0 0 1/6 2/3 1/6

0 0 0 0 1/6 2/3 ....

Let F =6G -6X , then

"c 1 0 0 0 ...
t c 1 0 0 ....

0 o c 1 0 ....

0 0 1 c 1 ....

0 0 0 1 c ....

where c = 4 - 6X.

To obtain eigenvalues it is required to solve the equation

det F =F 0,

n 2N + 1 where N is the dimensionality of the basis

Fn c F -Fn_2

Fn+1 = cFn n-1.



This may be written:

c _1 Ft

1 0 F°

In order to raise this matrix to the nth power the Cauchy

Integral Formula will be used. Discussion of the general conditions

under Which this formula may be applied to matrices is beyond the

scope of this memorandum, but verification of the result obtained,

is, of course, possible.

f(A) z) dzSf(A_) = z1 -A 2 Tr--j"•

R

where R encloses each zero of Iz1- A Iand no singularities of f(z).

n [ ]-1
= S z(z-c)+~i j

R L z-c

-4
Let a,a be roots of z(z-c) + 1. = 0

c = 7 +

[ n 1 -n [c

-l-z -

I -(1 a n -1C ] + a -n [ aI -11 c]
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nn _n- - n-1
aL-a. CL~a~ a~ -a. +a.

n+1 -n-I n -n
F + - a. -CL L .

- a - n _ L - +n-1 n

since
F 1 c=a +a+

F 0 1

For F = 0n

(a n-a-n)(a, + -I- n-1 + a-n- =0

that is

n+i -n-Ia -Q. =0

Zn+ 2 j Z1 T
a e ie e=I,Z.n

I x y/n+ cof /n1/n+ IIn÷

= Cos:

or, if k= n + 1 -1

[ Z+ cos kni- , k= 1,Z. N.
L_

Coupled Oscillator theory suggests eigenvectors of the form

u sin r
Urn n+
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For normalized eigenvectors

n m
Sbsin m+--r = I

It can be shown6 that this requirement is satisfied if

that is,
u2 si mkir

Umkn+ 1 sin n+-

G- -=U A U

where

0 Xz 0 ..
A 0 0 03

1 N n
gij Z E' Zui uj

= •,uUik uk"k= 1=1

n

k 1 ik kk kj

6 n Sinn=- sin

-- 6 E n+ +

n+ k Z+cos n+--

This gives the required Inverse Gram Matrix.
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APPENDIXV. EXPONENTIAL EXPANSIONS. EXAMPLE

Hs is given with respect to an orthogonalized harmonic

exponential, basis by:-

1,1!66667 0. 0 0
-0,942809 0.833333 0 0

24= 0.144338 -0.898146 0.650000 0

-0.066667 0.282843 -0.808290 0.533333

(i) From Equation (2. 3):-

1/2 1/3 1/4. 466667

S1/4 4/5 /6 0. 833333
1/4 1/5 1/6 1/7 0.650000

1i/5 4/6 1/7 4/8 0.533333

-4Z00 8100 -15120 8400 0.8333331

210 ;; -151 2  29400 -46800 0.650000

-4120 8400 -16800 9800 L 0.533333 ,

• 10009
0.9945

0.0008

- 0064

A 1.0009 1.9945 0.0008 0.0064
H(s) s-- + s+2 + T+- s+T

S+ s+2 S
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(ii) From Equation (2.4):-

0. 857145 b - a + 0.857145 b -a 1 = 1

1. 200000 b -a +Z.400000b -a = 4

1. 538461 b - a + 4.615383 b -
3 a = 9

1.875000 b - al + 7.500000 b- 4a = 16

Solving, we obtain

A 3.0000s+3.9959 0.9969 2.0032
H(s) 2 - TT. + s+1.9995

s2+2.9985+1.9980 +



APPENDIX VI. LAGUERRE FUNCTION EXPANSIONS EXAMPLE

PHis given with respect to a basis consisting of orthogonal

Laguerre Functions with sk - 1/2, k = 1, 2, 3, 4, by[1. 46667 0 0 0
H -0.76444 1.46667 0 0

P4 -0.34015 -0.76444 1.46667 0

-0.1,6458 -0.34015 -0.76444 1.46667

From Equation (3.3)

AI = 1. 46667

Az = 1.46667 - 0. 76444 0. 70223

A 3 = 0. 70223 - 0.34015 = 0. 36208

A 4 = 0. 36208 - 0. 16458 = 0. 1975

A
H(s)• 1. 46667 Ll(s).+ 0. 70223 L2 (s)+ 0. 36028 L 3(s)+0. 1975 L 4 (s)

where

Li(s) 1-,/,)i-I
- (s_12)- i=tZ,3s )

Li~s) (s+12)'



APPENDIX VII, EXPANSION IN TERMS OF ELEMENTARY HOLD

FUNCTIONS EXAMPLE

is given with respect to the "B"' basis by:-

0.93555 0 0 0

E H 0.77340 0.93555 0 0

0019759 0.77340 0.93555 0
0.06092 0.19759 0.77340 0.93555

then, from Equation (4. 1)

A1 = 2h i 87109
A2 = h- A= 0.32429

2h 2  A1

A3 = Zh2 -A 2 = 0.71947

A Zh 3 - A 3 = -0. 59762

A
H(s)- .87109 B 1(s) -0. 3Z429 B 2(s) +0. 71947 B 3(s) -0. 59 76ZB 4(s).
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APPENDIX VIII. EXPANSIONS IN TERMS"' OIk ELkEMENTARY

TRIANGULAR FUNCTIONS. EXAMPLE

A system matrixH1 is given with respect to a basis consisting of

elementary triangular functions by

[0.053333 -0. 0766671

4 [11.136667 0.356667J

A3
Obtain H(s) in the form E A. *is) and show that the matrix

A 1
corresponding to H(s) wit h respect to the given basis isH

[~s-H 2/3 1/61 0.053333 -0.0766671
-4--- I1/6 Z/31 1.136667 0.356667I

[2.225000 
0.0083331

L0.766667 0.225000

From Equation (5. 1)

A1 = 120 (0. 008333) =0.999960

A2 = 120 (0. 225000) -26(0. 999960) =1. 001040

A3 = 120 (0. 766667) - 26(l. 001040) - 66(0. 999960)

= 0.024360

H(s) --.0. 9996 *lh(s) + 1.001040 s)-0.024360 35

From Section 1. 5 of Part 1: -
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h(-4)(O

h-4)(1) = 1/5! (0.996)

h( 4 )(Z) = 1/51 (30. 99984)

h ( 4 )(3) = 1/5! (210.0018)

-= h(-4)(1)= 0.008333

m = h(-4)(2) - 4h(-4)() = 0.225000

m h(-4 )(3) - 4h(-4)(2) + 6 h(-4)(i) = 0. 765018

A 2/3 1/6] -1 [0.225000 0.0083331
i/6 z/3J 0.765018 0.2Z5000o

1 ,6 5000 0.008333]

04 . 0 7 6 5 0 1 8  0.2Z5000

0.05393 0. 76667

[ .3403 0. 35667]

which may be compared with H.


